AG12504

AccuNext 链特异性 RNA 文库制备试剂盒(Illumina)

AccuNext Stranded RNA-seq Library Kit for Illumina

本产品仅供科学研究使用,不能用于人、动物的医疗或诊断程序,不能使用本产品作为食品、化妆品或家庭用品等。 For Research Use Only. Not for use in diagnostic procedures for humans or animals. Also, do not use this product as food, cosmetic, or household item, etc.

目录

	产品概述	1
>	产品组成	1
>	保存及运输	2
>	实验原理及流程	2
>	产品优势	4
>	使用注意事项	5
>	实验前准备	6
>	操作方法	7
	A. RNA 片段化	7
	B. 反转录	7
	C. cDNA 纯化	8
	D. 文库扩增	9
	E. 文库纯化	10
	F. 文库质量检测	11
	实验例	11
>	产品注意事项	13
>	附录 A:接头引物搭配方式	16
	附录 B: AccuNext CDI 接头引物(Illumina、话用于 RNA 文库)的信息	16

> 产品概述

本产品是针对 Illumina 高通量测序平台研发的链特异性 RNA 文库构建试剂盒,可对 100 pg~100 ng 的 RNA 样本进行 RNA 文库构建,包含 RNA 片段化、逆转录(RT)和 PCR 文库扩增所需的所有组分。本产品通过加热使 RNA 片段化,然后以带接头序列的 3'-N6 Primer 进行反转录,依靠反转录酶的模板转换活性(Template-switching),在 RNA 5' 端添加一段接头序列,产生两端带有接头序列的 cDNA; 搭配 *AccuNext* CDI 接头引物(Illumina,适用于 RNA 文库)(Code No. AG12505、AG12506、AG12507)进行 PCR 扩增即可获得适用于 Illumina 测序平台的测序文库。

本产品操作简单,无需进行传统的末端修复、接头连接等繁琐的步骤,即可获得RNA测序文库;优化的反应体系,提高了文库转化效率,能兼容不同的模板量,测序获得的数据均一性高,覆盖度完整;同时,模板转换反应的方向性保留了RNA的链方向性,可获得RNA链特异性的测序数据。

由于 Total RNA 中 rRNA 占比近 90%,为了测序时获得更多有效的数据量及降低测序成本,建议去除 rRNA 后再进行 RNA 文库构建,以减少测序中 rRNA 的数据占比,获得更多有效的数据。

本产品的反应体系经过了精心优化,请使用本产品中提供的试剂进行 RNA 片段化、 逆转录和 PCR 文库扩增实验,建议不改变任何反应组分的用量及浓度,或用其他的等 效产品替换本产品中组分,以免获得不好的结果。如需替换,请先进行验证。

▶ 产品组成

Package 2-1 组分如下 (-80℃保存):

组分名称	AG12503 (12 rxns)	AG12504 (48 rxns)
Control Total RNA* (1 µ g / µ l)	20 µ l	20 µ l
5'-Adapter Primer Mix	54 μ Ι	216 µ l

^{*:} Control Total RNA 为 Mouse Liver Total RNA。

Package 2-2 组分如下 (-20℃保存):

组分名称	AG12503 (12 rxns)	AG12504 (48 rxns)
RNase Inhibitor (40 U/ µ I)	6 µ I	24 μ Ι
3'-N6 Primer	12 µ I	48 µ I
5X First-Strand Buffer	48 µ I	192 μ Ι
AccuNext Reverse Transcriptase (100 U/ μ I)	24 μ Ι	96 µ I
2X AccuNext PCR Mix II	300 µ I	1.2 ml
Nuclease free water	1 ml	1 ml X 4 pcs

注意: AccuNextCDI 接头引物(Illumina,适用于RNA文库)(Code No. AG12505、AG12506、AG12507)为实验必须试剂,但本产品中未配置,需要单独购买。AccuNextCDI 接头引物(Illumina,适用于RNA文库)的信息见附录A和B。

> 保存及运输

保存温度: Package 2-1-80℃保存

Package 2-2 -20℃保存

运输温度: Package 2-1 干冰运输

Package 2-2 -20℃冰袋运输或干冰运输

> 实验原理及流程

以RNA 为模板,用带有特定接头的 3'-N6 Primer 为反转录引物,合成 cDNA; 当 反转录酶到达 mRNA 5' 端时,利用反转录酶的末端转移酶活性,在 cDNA 的 3' 端引 入几个不依赖于模板的碱基,通过 5'-Adapter Primer Mix 继续合成带有特定接头的 cDNA。以双端带有特定接头的 cDNA 为模板,搭配 *AccuNext* CDI 接头引物(Illumina,适用于 RNA 文库)(Code No. AG12505、AG12506、AG12507)进行 PCR 扩增即可获得适用于 Illumina 测序平台的测序文库。原理如图 1 所示:

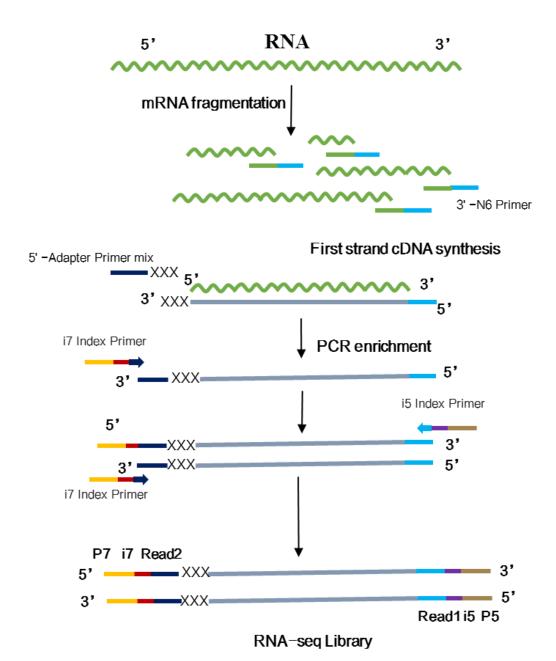


图 1: 文库构建原理

注: i5 index Primer 和 i7 index Primer 可使用 AccuNext CDI 接头引物(Illumina,适用于 RNA 文库) (Code No. AG12505、AG12506、AG12507)。

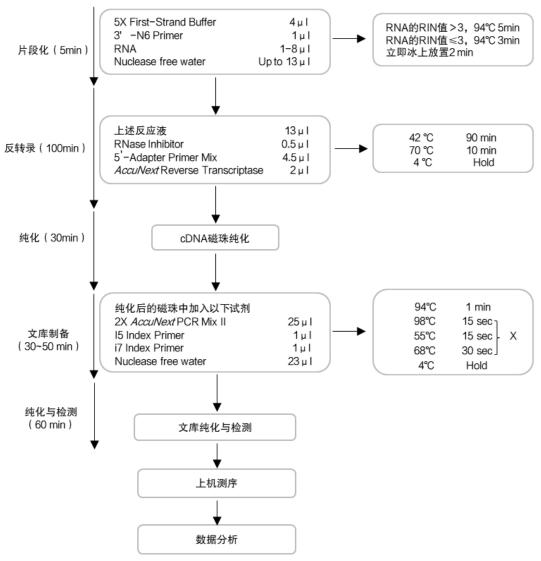


图 2: 实验操作流程

▶ 产品优势

- 1. 适用于 Illumina 测序平台:整合了 Index 和 Illumina 接头,构建的 RNA 文库可直接进行 NGS 测序。
- 2. 模板适用范围广:可对 100 pg~100 ng RNA 进行 RNA 文库构建;可兼容真核及原核生物 RNA 样本;降解的 RNA 也可以成功建库,兼容 RIN 值 2~10 的 RNA 样本。
- 3. 操作简单:无需进行传统的末端修复、接头连接等繁琐的步骤,即可获得 RNA 测序文库。
- 4. 能准确识别 RNA 链特异性: Read 1 读取的是原始 RNA 的反义链序列, Read 2 读取的是原始 RNA 的正义链序列。
- 5. 产品性能稳定:实验操作可重复。

> 使用注意事项

1. 防污染要求

- ❖ 在进行反转录反应时需要使用无菌无酶的器具,操作过程中应避免交谈,且需穿实验服,戴一次性手套等防止 RNA 被污染或降解。
- ❖ 由于本产品检测灵敏度高,要避免与其他实验的交叉污染。建议将试剂配制区、模板添加区、PCR 扩增区和产物纯化区进行物理隔离,且每次实验前后对实验台面进行擦拭清洁,防止发生污染。
- ❖ 建议在试剂配制区内进行以下操作:试剂准备、cDNA 合成试剂配制、PCR 扩增 试剂配制。请使用 RNase-free 级别的耗材,并对实验区域定期进行清洁。
- ❖ 为避免样品交叉污染,吸取不同样本时需更换枪头。
- ❖ 实验过程中小心轻柔地打开和关闭样品管盖,避免样品飞溅或喷洒。若样品飞溅至手套,建议更换手套;若喷洒至桌面,请立即用水或70%的酒精擦拭干净。
- ❖ 为避免污染,建议使用 2 台 PCR 仪进行实验: 一台用于第一链 cDNA 合成,一台用于 PCR 扩增。
- ❖ 若是首次实验,建议设置阳性对照及阴性对照,可使用本产品中的 Control Total RNA 进行阳性对照实验。

2. 样本要求

- ❖ 本产品可从 Total RNA 开始进行 RNA 文库构建,但为了增加测序数据有效性及降低测序成本,建议使用去除 rRNA 的 RNA 样本。可采用以下 2 种方法去除 rRNA:
 - 1) mRNA 的富集:针对完整性较好(RIN 值≥7)的真核生物 RNA,可采用 Oligo dT 磁珠富集含有 Ploy A 尾的 mRNA 样本。为避免低质量的样本(RIN 值<7)因 RNA 发生断裂,在用磁珠法富集 mRNA 时引入 3'偏好性,建议 实验前对 RNA 的完整性进行检测。
 - 2) rRNA 的去除: 针对没有 Ploy A 尾的 RNA 或降解的 RNA (RIN 值 < 7) 可采用 rRNA 的去除试剂盒【如 NEB#NEBNext® rRNA Depletion Kit (Human / Mouse / Rat)】处理后获得 RNA 样本。
- ❖ 本产品可从低至 100 pg 的 RNA 进行 cDNA 合成,但如果 RNA 量不限制的话, 建议增加 RNA 的起始量,以确保 RNA 文库构建成功。

3. PCR 扩增循环数选择

❖ 不同类型及不同用量的 RNA 样本中基因表达情况不同,因此,建议正式实验前,先摸索合适的循环数。可设置循环数梯度,确定最佳循环数(在 PCR 产物)

足够的前提下循环数越少越好)。下表是根据 Mouse Liver mRNA 及本产品中Control Total RNA(Mouse Liver Total RNA)摸索所得,可用于参考。

 模板量	推荐循环数
100 pg	18 ~ 21
1 ng	15 ~ 17
10 ng	12 ~ 14
100 ng	6 ~ 9

4. 测序数据分析

- ❖ Read 2 读取的是原始 RNA 的正义链序列, Read 1 读取的是原始 RNA 的反义链序列。
- ❖ Read 2 读取时,前三个碱基(XXX)是由于模板转换时,由 5'-Adapter Primer Mix 引入的序列,因此在双端测序时,分析前修剪去除这三个碱基序列。

> 实验前准备

1. 试剂 & 耗材:

- ❖ mRNA 富集: SteadyPure Mag mRNA 纯化试剂盒(磁珠法)(Code No. AG21204)或其他等效产品。
- ❖ 磁珠纯化:本公司产品 *MagSpherix* DNA Beads (Code No. AG12546、AG12547、AG12548)或其他等效产品【如 AMPure XP Reagent (Beckman Coulter Life Sciences, Code No. A63881)】。
- ◆ DNA 评价: High Sensitivity DNA Kit (Agilent, Code No. 5067-4626)及及本公司 产品 *AcuQ* 1X dsDNA HS Assay Kit (Code No. AG12549、AG12550)或其他 等效产品【如 Qubit 1X dsDNA HS Assay Kit (Thermo Fisher Scientific, Code No. Q33231)】。
- ◆ RNA 评价: Agilent RNA 6000 Pico Kit (Agilent, Code No. 5067-1513) 或其他等效产品。
- ❖ 其他材料: 低吸附 Tube 管 (如 Eppendorf, Code No. 022431021,或其他等效产品),80%乙醇溶液,RNase-free PCR 管,1.5 ml 离心管。

2. 仪器:

❖ PCR 仪、Qubit 4 Fluorometer、Agilent Technologies 2100 Bioanalyzer、移液器、涡旋振荡仪、小型桌面离心机。

> 操作方法

A. RNA 片段化

1. 将待用试剂冰上融化,短暂离心,混匀后放置在冰上备用。其中 5'-Adapter Primer Mix、*AccuNext* Reverse Transcriptase 和 RNase Inhibitor 轻弹管壁混匀或用移液器轻柔吸打混匀,请勿涡旋混匀。其余试剂可用涡旋振荡器轻柔混匀。按照下列表格在冰上配制预混,配制完成后,用移液器轻柔吸打混匀。

组分	体积(μl)
5X First-Strand Buffer	4
3'-N6 Primer	1
RNA*	1~8
Nuclease free water	Up to 13

- *: 推荐 RNA 加入量为 100 pg ~ 100 ng,如果样本量不受限制,建议在推荐范围内用较高的模板量。本产品中的 Control Total RNA 为 1 μ g/ μ l 的 Mouse Liver Total RNA,可按照梯度稀释至 20 ng/ μ l、2 ng/ μ l、200 pg/ μ l、20pg/ μ l,取 5 μ l 加入反应体系中。
- 2. 根据 RNA 样本的 RIN 值,参照下表进行片段化反应*。然后冰上放置 2 min。

RIN 值	时间(min)	温度(℃)
>3	5	94
≤3	3	94

- *: 可在片段化过程中,同时按照 **< B.** 反转录 **>** 配制各组分预混液,待片段化结束,加入至上述片段化反应液中。如果 RNA 样本降解比较严重时,可适当调整片段化时间,如果在建库后的片段分布范围偏大,或者在大片段处会有明显的峰,可将片段化时间延长,若建库后的片段分布范围偏小,在小片段处有很明显的峰,则可适当减少片段化时间。
- 3. 片段化结束后,按照下述进行反转录反应。

B. 反转录

1. 配制 RT Master Mix:

组分	体积(μI)
上述片段化反应液	13
RNase Inhibitor	0.5
5'-Adapter Primer Mix	4.5
AccuNext Reverse Transcriptase	2
Total	20

*: 可将这3个组分配制成预混液(*AccuNext* Reverse Transcriptase 可在使用前添加),用移液器轻柔吸打混匀,取7µl预混液加入至上述**片段化反应液**中,再次轻柔吸打混匀并短暂离心。

2. 在 PCR 仪中运行以下程序(可提前设置反应程序):

温度	时间
42°C	90 min
70℃	10 min
4°C*	Hold*

*: 在下一步反应准备好之前,将产物置于冰上或 4℃或-20℃暂存(为避免 cDNA 降解,建议尽快进行后续步骤)。

C. cDNA 纯化

使用磁珠纯化 cDNA 产物。若使用 *MagSpherix* DNA Beads(Code No. AG12546 / AG12547 / AG12548),一般推荐使用 1.1X(磁珠量:样品量 = 1.1:1)的磁珠比例进行 cDNA 产物纯化。如果出现片段偏小的情况或需要更大的片段长度,可调整磁珠比例至 1.0X(磁珠量:样品量 = 1:1)进行纯化。步骤如下:

【注:不同的磁珠使用比例可能不一致,建议使用前摸索合适的磁珠比例。如果使用AMPure XP Reagent (Beckman Coulter Life Sciences, Code No.A63881),推荐按照 1.0X 的磁珠比例进行纯化】。

实验前准备:

- 首次使用,可根据实际需求将磁珠分装至 1.5 ml 离心管中,保存在 4℃。
- 2. 实验前,可根据实验量,配制新的80%乙醇溶液(每个样品需要800µl)。
- 3. 实验前,将磁珠恢复至室温(室温静置约 30 min),并轻柔涡旋至充分混匀(约5 min)。

操作步骤

- 将已恢复至室温的 22 µ I 磁珠加入至 20 µ I cDNA 产物中(按照磁珠:样品 = 1.1:1 比例添加)。用涡旋混匀 5 sec,或使用移液器吸打 10 次,充分混匀,短暂离心。
- 2. 将磁珠 / cDNA 混合物在室温下孵育 8 min, 让 cDNA 与磁珠结合。
- 3. 将样品放在磁力架上至少 5 min,直到液体完全清澈且上清液中没有磁珠。小心地去除上清液,注意不要打散磁珠。
- 4. 保持 PCR 管始终置于磁力架上,加入 200 μl 新配制的 80%乙醇溶液(**注意加入 乙醇溶液时不要干扰磁珠**),室温孵育 30 sec,小心去除上清液。
- 5. 重复步骤 4 一次。
- 6. 用桌面离心机短暂离心,然后将 PCR 管放在磁力架上约 30 sec,然后用 10 μ l 移液器除去剩余的乙醇溶液。
- 7. 保持 PCR 管始终置于磁力架上,开盖干燥磁珠 3~5 min 至无乙醇溶液残留。

【注意:无乙醇溶液残留时,磁珠表面无光泽;如果乙醇溶液未干燥完全,可能会影响 cDNA 的洗脱效率及影响下游实验。但注意不要过分干燥磁珠,避免磁珠表面开裂,降低 cDNA 洗脱效率。】

- 8. 磁珠晾干后,将 PCR 管从磁力架上取下,加入 20 µ I Nuclease free water;使用 移液器吸打混匀磁珠,室温孵育 2 min(如果磁珠干燥开裂,适当延长孵育时间)。
- 9. 将 PCR 管短暂离心后置于磁力架上,分离磁珠和液体直至溶液澄清(约 5 min)。
- 10. 小心吸取全部上清液至新的 PCR 管中。
- 11. 重复上述步骤 1~7, 更好地去除接头引物的污染。

【注意:在步骤 7 磁珠干燥至无乙醇残留后,不再重复步骤 8-10(加入 Nuclease free water),而是向干燥的磁珠中添加<D. 文库扩增>步骤配制好的 PCR Master Mix 进行后续操作。】

D. 文库扩增

1. 按下表在冰上配制 PCR Master Mix:

组分名称	体积(μl)
2X AccuNext PCR Mix II	25
i5 Index Primer [™]	1 1
i7 Index primer	1 5 **
Nuclease free water	23
Total	50

- *a: 如果多个样本需要用不同的 index 引物,可将 i5 Index Primer 和 i7 Index Primer 单独配制。
- *b: i5 / i7 Index Primer 可使用 *AccuNext* CDI 接头引物(Illumina,适用于 RNA 文库)(Code No. AG12505 / AG12506 / AG12507)。
- 取 50 μ I PCR Master Mix 加入至上述 cDNA 纯化产物中(带磁珠), 轻柔涡旋混匀, 离心。
- 3. 立即在 PCR 仪中运行以下反应程序(建议在配制 PCR Master Mix 前,提前设置 反应程序):

步骤	温度	时间	循环数
预变性	94°C	1 min	1
变性	98°C	15 sec	<u> </u>
退火	55℃	15 sec	
延伸	68°C	30 sec	J
保存	4°C	Hold	-

*:不同类型及不同用量的 RNA 样本中基因表达情况不同,因此,建议正式实验前, 先摸索合适的循环数,可设置循环数梯度,确定最佳循环数(在 PCR 产物足够的 前提下循环数越少越好)。下表是根据 Mouse Liver mRNA 及本产品中 Control Total RNA(Mouse Liver Total RNA)摸索所得,可用于参考。

模板量	推荐循环数
100 pg	18 ~ 21
1 ng	15 ~ 17
10 ng	12 ~ 14
100 ng	6 ~ 9

4. 反应结束后将产物放置于冰上,可立即进行后续文库纯化步骤,也可将文库扩增 产物置于-20℃或-80℃保存(为避免 DNA 降解,建议尽快进行后续实验)。

E. 文库纯化

使用磁珠纯化 DNA 文库。若使用 *MagSpherix* DNA Beads(Code No. AG12546、AG12547、AG12548),一般推荐使用 1.1X(磁珠量:样品量 = 1.1:1)的磁珠比例进行 DNA 文库纯化。如果出现片段偏小的情况或需要更大的片段长度,可调整磁珠比例至 1.0X(磁珠量:样品量 = 1:1)进行纯化。步骤如下:

【注:不同的磁珠使用比例可能不一致,建议使用前摸索合适的磁珠比例。如果使用AMPure XP Reagent (Beckman Coulter Life Sciences, Code No.A63881),推荐按照 1.0X 的磁珠比例进行纯化】。

实验前准备:

- 1. 首次使用,可根据实际需求将磁珠分装至 1.5 ml 离心管中,保存在 4℃。
- 实验前,可根据实验量,配制新的80%乙醇溶液(每个样品需要400μl)。
- 3. 实验前,将磁珠恢复至室温(室温静置约 30 min),并轻柔涡旋至充分混匀(约 5 min)。

操作步骤:

添加 55 μ I 的已恢复室温的磁珠至上述 50 μ I DNA 文库中(按照磁珠:样品=
1.1:1)。涡旋混匀 5 sec 或使用移液器吸打 10 次,充分混匀,短暂离心。

- 2. 将磁珠 / DNA 混合物在室温下孵育 8 min, 让 DNA 与磁珠结合。
- 3. 将样品放在磁力架上至少 5 min,直到液体完全清澈且上清液中没有磁珠,小心地去除上清液,注意不要打散磁珠。
- 4. 保持 PCR 管始终置于磁力架上,加入 200 μ I 新配制的 80%乙醇溶液(**注意加入 乙醇溶液时不要干扰磁珠**),室温孵育 30 sec,小心去除上清液。
- 5. 重复步骤 4 一次。
- 6. 用桌面离心机短暂离心,然后将 PCR 管放在磁力架上约 30 sec,然后用 10 µ l 移液器除去剩余的乙醇溶液。
- 7. 保持 PCR 管始终置于磁力架上,开盖干燥磁珠 5~10 min 至无乙醇溶液残留; 【注意:无乙醇溶液残留时,磁珠表面无光泽;如果乙醇溶液未干燥完全,可能会影响 DNA 的洗脱效率及影响下游实验。但注意不要过分干燥磁珠,避免磁珠表面开裂,降低 DNA 洗脱效率。】
- 8. 磁珠晾干后,将 PCR 管从磁力架上取下,加入 17 μ I RNase free Water 覆盖磁珠,使用移液器吸打混匀磁珠,室温孵育 2 min(如果磁珠干燥开裂,适当延长孵育时间)。
- 9. 将 PCR 管短暂离心,置于磁力架上,分离磁珠和液体直至溶液澄清 (约 5 min)。
- 10. 小心吸取 15 µ l 上清转移到新的低吸附 Tube 管中(**勿吸到磁珠**),即可获得构建的文库产物,−20℃保存。

F. 文库质量检测

- 取 2 μ I 纯化后的文库产物,使用 Qubit 4 Fluorometer 和 AcuQ 1X dsDNA HS Assay Kit (Code No. AG12549、AG12550)检测文库浓度,具体操作请参照上述产品说明书。
- 取 1 μ I 纯化后的文库产物,使用 Agilent Technologies 2100 Bioanalyzer 检测文库的大小分布【如 Agilent High Sensitivity DNA Kit (Agilent, Code No. 5067-4626)】,具体操作请参照说明书。
- 3. 实验成功的反应,会产生摩尔浓度大于 7.5 nM 的文库产物,片段大小分布于 200 ~ 700 bp,峰值位于 300 bp 左右。阴性对照无扩增产物。

> 实验例

 使用本公司产品 SteadyPure Mag mRNA 纯化试剂盒(磁珠法)(Code No. AG21204)纯化 mRNA。采用本产品进行 293T Cell mRNA 文库构建,RNA 模板添加量为 100 pg,PCR 扩增循环数为 19。结果如下:图 3-A 显示了扩增后的

文库产物,分布均匀,峰值在 200 ~ 700 bp 之间。图 3-B 显示无模板的阴性对照中没有产物。

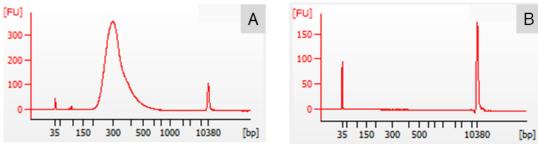


图 3. Agilent 2100 生物分析仪检测结果

2. 以纯化的 293T Cell mRNA 为模板,用本产品进行文库构建,使用 Illumina NovaSeq 6000 系统测序,数据如下。

Sequencing metrics comparing input mRNA amounts					
mRNA source	293T cell mRNA				
Input mRNA	100pg		10	10ng	
Replicate	1	2	1	2	
Q30 Bases rate (%)	93.2	92.62	91.91	92.5	
Total gene number(FPKM>0.1)	17455	17348	21522	21399	
Total gene number(FPKM>1)	12968	12986	13118	13090	
Percentage of reads(%)					
rRNA residue rate	2.49	2.25	2.63	2.66	
Mapped to genome	90.51	90.16	88.06	88.69	
Mapped unique to genome	85.19	85.02	82.88	83.38	
exon	89.97	90.08	90.54	90.5	
Intron	6.4	6.39	5.91	5.93	
Intergenic	3.63	3.53	3.55	3.57	
Pearson	0.918		0.982		
Spearman	0.81		0.878		

表 1. 主要 mRNA-Seq 数据

3. 以不同浓度(100 pg 和 10 ng)的 293T Cell mRNA 为模板,用本产品进行反转及文库构建,分别做 2 个技术重复,使用 Illumina NovaSeq 6000 系统测序,2 个技术重复结果的基因表达相关性很高,表明实验重复性好(图 4: A 为 100 pg、B 为 10 ng)

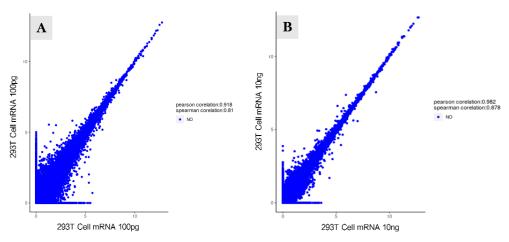


图 4. 基因表达重复性分析

4. 以 293T Cell mRNA 的 100 pg 和 10 ng 为模板,用本产品进行反转及文库构建,使用 Illumina NovaSeq 6000 系统测序,测序后分析测序片段在基因上的分布,结果显示用本产品扩增的片段无 5' 端和 3' 端的偏好性,分布均一(图 5: A 为 293T Cell mRNA 100 pg、B 为 293T Cell mRNA 10 ng)。

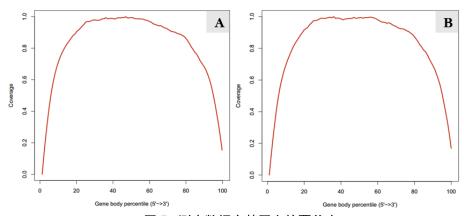


图 5. 测序数据在基因上的覆盖度

> 产品注意事项

1. 防污染措施

- ❖ 在进行反转录反应时需要使用无菌无酶的器具,操作过程中应避免讲话,且需穿戴好实验服,一次性手套等防止 RNA 被污染或降解。
- ❖ 由于本产品检测灵敏度高,要避免与其他实验的交叉污染。建议将试剂配制区、模板添加区、PCR 扩增区和产物纯化区进行物理隔离,且每次实验前后对实验台面进行擦拭清洁,防止发生污染。
- ❖ 建议在试剂配制区内进行以下操作:试剂准备、cDNA 合成试剂配制、PCR 扩增 试剂配制。请使用 RNase-free 级别的耗材,并对实验区域定期进行清洁。

- ❖ 本产品应储存在无核酸酶和无核酸污染的环境中,避免试剂污染。
- ❖ 为避免样品交叉污染,吸取不同样本时请更换枪头。
- ❖ 实验过程中小心轻柔地打开和关闭样品管盖,避免样品飞溅或喷洒。若样品飞溅至 手套,建议更换手套;若喷洒至桌面,请立即用水或70%的酒精擦拭。
- ❖ 为避免污染,建议使用 2 台 PCR 仪进行实验: 一台用于第一链 cDNA 合成, 一台 用于 PCR 扩增。

2. 样品准备:

- ❖ 使用纯度较高的 RNA 进行反应,防止残留的蛋白质、有机溶剂和盐离子等影响酶的活性,降低反应性能。
- ◆ 由于 Total RNA 中 rRNA 占比近 90%,为了测序时获得更多有效的数据量及降低测序成本,建议去除 rRNA 后再进行 RNA 文库构建,以减少测序中 rRNA 的数据占比,获得更多有效的数据。
- ❖ 对于有部分降解的 RNA 或者没有 Ploy A 尾的 RNA,可使用 rRNA 去除试剂盒 【如 NEB#NEBNext® rRNA Depletion Kit (Human / Mouse / Rat)】除去 rRNA 后 进行文库构建。

3. 样品片段化

❖ 如果 RNA 样本降解比较严重时,可适当调整片段化时间,如果在建库后的片段分布范围偏大,或者在大片段处会有明显的峰,可将片段化时间延长,若建库后的片段分布范围偏小,在小片段处有很明显的峰,则可适当减少片段化时间。

4. 磁珠纯化(cDNA及文库纯化)

- ◆ 在使用前,应该先将磁珠平衡至室温,避免导致产物回收率下降。
- ❖ 磁珠每次使用前应先充分振荡混匀。
- ❖ 纯化过程中使用的 80%乙醇溶液, 现配现用, 避免长时间保存而导致乙醇溶液挥发, 降低乙醇溶液浓度。
- ❖ 乙醇清洗完成后,应使乙醇溶液充分挥发,避免影响产物的回收率。
- ❖ 洗脱完毕,吸取上清时,应小心吸取洗脱液上清,避免吸入磁珠,以免对后续实验造成影响。
- ❖ 推荐纯化 cDNA 时,选择纯化两遍以去除引物的残留。

❖ 不同的磁珠比例可回收不同大小 DNA 片段,本试剂盒推荐 1.1X 的磁珠比例进行 cDNA 和文库纯化。若出现片段偏小的情况,可调整磁珠比例至 1.0X。

5. PCR 扩增循环数及引物选择

- ❖ 选择最佳的循环数,确保仍然在扩增的指数期。在 RNA 文库产量足够的前提下循环数越少越好。
- ❖ 扩增循环数过低,会导致 RNA 文库产量不足,影响后续的测序结果。
- ◆ 可参考本说明书推荐的循环数进行实验,若文库产量不足,可增加 2~3 个循环进行测试。AccuNext CDI 接头引物(Illumina,适用于 RNA 文库)(Code No. AG12505、AG12506、AG12507)可根据不同的 Index 区分文库,i5 Index Primer 含有 8 种不同的 Index,i7 Index Primer 含有 12 种不同的 Index,建议选择不同的组合搭配使用(具体方法见附录 A)。

6. 测序及数据分析建议

- ◆ 大多数 Illumina 测序文库制备方案要求文库的最终浓度为≥2 nM 或≥4 nM,为了保证测序的成功率,可以制备摩尔浓度大于 7.5 nM 的文库进行测序,将其用合适的移液器转移至低吸附的 1.5ml 离心管中保存。
- ❖ Read 2 读取的是原始 RNA 的正义链序列, Read 1 读取的是原始 RNA 的反义链序列。
- ❖ Read 2 读取时,前三个碱基(XXX)是由于模板转换时,由 5'-Adapter Primer Mix 引入的序列,因此在双端测序时,分析前修剪去除这三个碱基序列。

▶ 附录 A: 接头引物搭配方式

以 AccuNext CDI 接头引物(Illumina,适用于 RNA 文库)(Code No. AG12507)为例,可选择下表中任意一种搭配方式:

												_//
	AP701	AP702	AP703	AP704	AP705	AP706	AP707	AP708	AP709	AP710	AP711	AP712
AP501	\bigcirc											
AP502	\bigcirc											
AP503	\bigcirc											
AP504	\bigcirc											
AP505	\bigcirc											
AP506	\bigcirc											
AP507	\bigcirc											
AP508	\bigcirc											

▶ 附录 B: AccuNext CDI 接头引物(Illumina, 适用于 RNA 文库)的信息

用途	品名	AG12505 (12 rxns)	AG12506 (48 rxns)	AG12507 (96 rxns)	管盖颜色
	AP501	12 µ I	12 μ Ι	12 µ I	
	AP502	-	12 μ Ι	12 μ Ι	
	AP503	-	12 μ Ι	12 μ Ι	
i5 Index Primer	AP504	-	12 μ Ι	12 μ Ι	
(AP501-AP508)	AP505	-	-	12 µ I	
	AP506	-	-	12 µ I	
	AP507	-	-	12 µ I	
	AP508	-	-	12 µ I	
	AP701	5μΙ	5μΙ	8 µ I	
	AP702	5μΙ	5μΙ	8μΙ	
	AP703	5μΙ	5μΙ	8μΙ	
	AP704	5μΙ	5μΙ	8μΙ	
	AP705	5μΙ	5μΙ	8μΙ	
i7 Index Primer	AP706	5μΙ	5μΙ	8μΙ	
(AP701-AP712)	AP707	5μΙ	5μΙ	8μΙ	
	AP708	5μΙ	5μΙ	8μΙ	
	AP709	5μΙ	5μΙ	8μΙ	
	AP710	5μΙ	5μΙ	8μΙ	
	AP711	5μΙ	5μΙ	8μΙ	
	AP712	5μΙ	5μΙ	8μΙ	•

AccuNext CDI 接头引物 (Illumina,适用于 RNA 文库)序列信息如下:

i5 Index Primer for Illumina

5' -AATGATACGGCGACCACCGAGATCTACAC [i5 Index] ACACTCTTTCCCTACACGACGCTCTTCCGATCT- 3'

i7 Index Primer for Illumina

5' -CAAGCAGAAGACGGCATACGAGAT [17 Index] GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT- 3'

[i5 Index] 表示 8 bp 的 i5 Index 序列, [i7 Index] 表示 8 bp 的 i7 Index 序列。

组分			Sample Sheet 输入 / 测序时 Index 序列				
		引物 Index 序列	NovaSeq 6000 v1.0	NovaSeq 6000 v1.5 reagents, MiniSeq, NextSeq, HiSeq 3000 /			
		נילית אשטווו שקור	reagents, MiSeq, HiSeq				
			2000 / 2500	4000			
	AP501	TATAGCCT	TATAGCCT	AGGCTATA			
	AP502	ATAGAGGC	ATAGAGGC	GCCTCTAT			
	AP503	CCTATCCT	CCTATCCT	AGGATAGG			
i5 index	AP504	GGCTCTGA	GGCTCTGA	TCAGAGCC			
Primers	AP505	AGGCGAAG	AGGCGAAG	CTTCGCCT			
	AP506	TAATCTTA	TAATCTTA	TAAGATTA			
	AP507	CAGGACGT	CAGGACGT	ACGTCCTG			
	AP508	GTACTGAC	GTACTGAC	GTCAGTAC			
	AP701	CGAGTAAT	ATTACTCG				
	AP702	TCTCCGGA	TCCGGAGA				
	AP703	AATGAGCG	CGCTCATT				
	AP704	GGAATCTC	GAGATTCC				
	AP705	TTCTGAAT	ATTCAGAA				
i7 index	AP706	ACGAATTC	GAATTCGT				
Primers	AP707	AGCTTCAG	CTGAAGCT				
	AP708	GCGCATTA	TAATGCGC				
	AP709	CATAGCCG	CGGCTATG				
	AP710	TTCGCGGA	TCCGCGAA				
	AP711	GCGCGAGA	TCTCGCGC				
	AP712	CTATCGCT	AGCGATAG				

技术支持热线: 400-767-6022 详细信息请查阅 <u>www.agbio.com.cn</u>